554 research outputs found

    Noise equivalent circuit of a semiconductor laser diode

    Get PDF
    The noise equivalent circuit of a semiconductor laser diode is derived from the rate equations including Langevin noise sources. This equivalent circuit allows a straightforward calculation of the noise and modulation characteristics of a laser diode combined with electronic components. The intrinsic junction voltage noise spectrum and the light intensity fluctuation of a current driven laser diode are calculated as a function of bias current and frequency

    Local crystallographic texture and voiding in passivated copper interconnects

    Full text link
    A correlation between local crystallographic texture and stress‐induced void formation in tantalum‐encapsulated, copper interconnects was revealed by electron backscattering diffraction studies in a scanning electron microscope. Lines exhibiting an overall stronger 〈111âŒȘ texture showed better resistance to void formation. Furthermore, grains adjacent to voids exhibited weaker 〈111âŒȘ texture than grains in unvoided regions of the same line. The locally weaker 〈111âŒȘ texture at voided locations suggests the presence of higher diffusivity, twist boundaries. This work, which represents the first characterization of local texture in stress voided, copper lines, helps to elucidate the relative importance of the thermodynamic and kinetic factors which govern void formation and growth. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70319/2/APPLAB-69-26-4017-1.pd

    On continuum driven winds from rotating stars

    Full text link
    We study the dynamics of continuum driven winds from rotating stars, and develop an approximate analytical model. We then discuss the evolution of stellar angular momentum, and show that just above the Eddington limit, the winds are sufficiently concentrated towards the poles to spin up the star. A twin-lobe structure of the ejected nebula is seen to be a generic consequence of critical rotation. We find that if the pressure in such stars is sufficiently dominated by radiation, an equatorial ejection of mass will occur during eruptions. These results are then applied to {\eta}-Carinae. We show that if it began its life with a high enough angular momentum, the present day wind could have driven the star towards critical rotation, if it is the dominant mode of mass loss. We find that the shape and size of the Homunculus nebula, as given by our model, agree with recent observations. Moreover, the contraction expected due to the sudden increase in luminosity at the onset of the Great Eruption explains the equatorial "skirt" as well.Comment: 8 pages, 4 figure

    Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons

    Get PDF
    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction

    Emerging technologies to measure neighborhood conditions in public health: Implications for interventions and next steps

    Get PDF
    Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health

    Faster linearizability checking via PP-compositionality

    Full text link
    Linearizability is a well-established consistency and correctness criterion for concurrent data types. An important feature of linearizability is Herlihy and Wing's locality principle, which says that a concurrent system is linearizable if and only if all of its constituent parts (so-called objects) are linearizable. This paper presents PP-compositionality, which generalizes the idea behind the locality principle to operations on the same concurrent data type. We implement PP-compositionality in a novel linearizability checker. Our experiments with over nine implementations of concurrent sets, including Intel's TBB library, show that our linearizability checker is one order of magnitude faster and/or more space efficient than the state-of-the-art algorithm.Comment: 15 pages, 2 figure

    Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo

    Get PDF
    The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways. Selinexor is an FDA-approved XPO1 inhibitor. Through bioinformatics analysis, we predicted nuclear export sequences in the ACE-2 protein and confirmed by in vitro testing that inhibition of XPO1 with selinexor induces nuclear localization of ACE-2. Administration of selinexor inhibited viral infection prophylactically as well as therapeutically in vitro. In a ferret model of COVID-19, selinexor treatment reduced viral load in the lungs and protected against tissue damage in the nasal turbinates and lungs in vivo. Our studies demonstrated that selinexor downregulated the pro-inflammatory cytokines IL-1ÎČ, IL-6, IL-10, IFN-Îł, TNF-α, and GMCSF, commonly associated with the cytokine storm observed in COVID-19 patients. Our findings indicate that nuclear export is critical for SARS-CoV-2 infection and for COVID-19 pathology and suggest that inhibition of XPO1 by selinexor could be a viable anti-viral treatment option

    Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

    Get PDF
    We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions of bilinear groups in which the generalized subgroup decision assumption follows from the decision Diffie-Hellman assumption, the decision linear assumption, and/or related assumptions in prime-order groups. We apply our framework and our prime-order group constructions to create more efficient versions of cryptosystems that originally required composite-order groups. Specifically, we consider the Boneh-Goh-Nissim encryption scheme, the Boneh-Sahai-Waters traitor tracing system, and the Katz-Sahai-Waters attribute-based encryption scheme. We give a security theorem for the prime-order group instantiation of each system, using assumptions of comparable complexity to those used in the composite-order setting. Our conversion of the last two systems to prime-order groups answers a problem posed by Groth and Sahai

    On the Spectrum of Direct Gaugino Mediation

    Full text link
    In direct gauge mediation, the gaugino masses are anomalously small, giving rise to a split SUSY spectrum. Here we investigate the superpartner spectrum in a minimal version of "direct gaugino mediation." We find that the sfermion masses are comparable to those of the gauginos - even in the hybrid gaugino-gauge mediation regime - if the messenger scale is sufficiently small.Comment: 21 pages, 4 figures; V2: refs. adde

    A Light Stop with Flavor in Natural SUSY

    Full text link
    The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of the Standard Model motivate the investigation of supersymmetric quiver-like BSM extensions. We study the properties of such a minimal class of models which deals naturally with the SM parameters. Considering experimental bounds as well as constraints from flavor physics and Electro-Weak Precision Data, we find the following. In a self-contained minimal model - including the full dynamics of the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma} constraints. Relaxing the assumption concerning the mass generation of the heavy Higgses, we find that a stop not far from half a TeV is allowed. The models have some unique properties, e.g. an enhancement of the h-> b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20 between the squarks of the first two generations and the stop, relatively light Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde
    • 

    corecore